

NOTES VISION DISORDERS

GENERALLY, WHAT ARE THEY?

PATHOLOGY & CAUSES

- Vision deficit disorders
- Correlate with anatomical lesions along visual pathway
 - Light → cornea → lens → media → retina → optic nerve → chiasmal decussation → optic radiations (parietal, temporal paths) → primary visual cortex in occipital lobe

CAUSES

- Mass effect \rightarrow impingement of structures
- Vascular → brain parenchyma infarction along visual pathway

SIGNS & SYMPTOMS

Impaired vision

DIAGNOSIS

OTHER DIAGNOSTICS

- History
- Physical/neurologic examination
- Cranial nerve (CN) testing
 - CN II: visual fields and acuity
 - CN II/III: pupillary reflex
 CN III/IV/VI: ocular movement
 - TREATMENT

MEDICATIONS

• Vascular: thrombolytics

SURGERY

Masses: resection

NOTES

BITEMPORAL HEMIANOPSIA

osms.it/bitemporal_hemianopsia

PATHOLOGY & CAUSES

- Visional deficit: lateral vision loss
 Optic chiasm lesions (commonly)
- Pathogenesis: ↑ sellar mass size → presses optic chiasm → impinges decussating visual fibers (most medial) → bitemporal hemianopsia

CAUSES

- Pituitary enlargement
 - Hyperplasia (i.e. pregnancy or lactation); adenoma (specific, hormone-secreting pituitary hyperplasia); cyst; abscess
- Craniopharyngioma
- Meningioma (in sella turcica)
- Saccular aneurysm (anterior communicating artery)
- Primary malignancy
 - Germ cell tumor (AKA ectopic pinealoma); chordoma; central nervous system (CNS) lymphoma

COMPLICATIONS

- \uparrow size \rightarrow further impinges surrounding structures
 - \circ Cavernous sinus impingement \rightarrow CN III, IV, VI \rightarrow diplopia \rightarrow ophthalmoplegia
- Dorsal extension of mass → dorsal midbrain impingement → Parinaud's syndrome
 - Upgaze paralysis
 - Pinealomas (posterior, common)

SIGNS & SYMPTOMS

- Vision loss
 - Lateral fields, both eyes (may go unnoticed; chronic, progressive)
- Headache
- Diplopia

- Ophthalmoplegia (especially large mass lesions, pinealomas)
- Hormonal deficiency/excess (if pituitary growth is functional)

DIAGNOSIS

DIAGNOSTIC IMAGING

MRI

 Visualize mass at area of optic chiasm; gadolinium-enhanced images aid elucidating pituitary tissue (↑ gadolinium uptake in pituitary)

CT scan

 Less diagnostic; may reveal sellar calcification, mass

TREATMENT

MEDICATIONS

 Smaller, hormone-responsive adenomas (prolactinomas → dopamine agonists firstline therapy)

SURGERY

- Neurosurgery: nasal aperture, posterior nasopharynx, sublabial (upper lip) incision accesses inferior aspect of cerebrum
 - Fluoroscopic visualization: navigation, pituitary visualization
- First-line therapy for all other pituitary adenomas, sellar masses with meaningful visual field impingement/other symptom severity

COLOR BLINDNESS

osms.it/color-blindness

PATHOLOGY & CAUSES

- Altered color perception
- Pathogenesis
 - Atypical cone type(s) function → altered color hue → limited color discrimination (commonly)
 - Optic nerve/other retinal lesions (uncommon)

CAUSES

Congenital

- Three cone types (opsins)
 - Red, green opsins (X-chromosome): most inherited color blindness X-linked recessive → predominantly biologicallymale individuals
 - Blue opsin (VII-chromosome): blue wavelength deficiency, very rare
- Associated with Turner syndrome

Acquired

- Optic neuropathies
 - Optic neuritis: persistent color blindness after visual deficit restoration; early multiple sclerosis symptom
 - Diabetic retinopathy: neoproliferation, microvascular disease → retinal dysfunction (glaucoma)
- Bilateral, ventral occipital stroke → cerebral achromatopsia (rare)

latrogenic

- Ethambutol → poor red-green discrimination
- Digoxin \rightarrow yellowish hue disturbance
- Other
 - Ibuprofen, quinine, acetaminophen, sildenafil citrate, tobacco

COMPLICATIONS

• Nyctalopia: limited night vision

SIGNS & SYMPTOMS

Limited color discrimination

DIAGNOSIS

Family, medication history

OTHER DIAGNOSTICS

- Ishihara plates: visual stimuli, colors offer wavelength-specific stimulation for three cone types
 - Inability to perceive numbers/letters on plate \rightarrow reveal cone type deficit(s)

TREATMENT

OTHER INTERVENTIONS

- No curative therapy
- Acquired disease
 - Glaucoma: regular eye examinations
 - Diabetes: glycemic control → ↓ microvascular disease; regular eye examinations
- Individual education → lifestyle adaptation
 → proper visual cue interpretation
 - Unable to perceive red vs. green light difference on traffic signals → location discrimination education → top vs. bottom light interpretation

CORTICAL BLINDNESS

osms.it/cortical-blindness

PATHOLOGY & CAUSES

• Acquired blindness: bilateral lesions to visual cortex in occipital lobe

Pathogenesis

- Vascular occlusion
 - Bilateral, distal posterior cerebral artery (PCA) occlusion; commonly embolic
 - \circ Basilar artery occlusion $\rightarrow\downarrow$ blood flow in bilateral distal PCAs
- Vascular flow dysregulation → posterior reversible encephalopathy syndrome (PRES)

CAUSES

- Primary visual cortex lesions (calcarine fissure in occipital lobe)
 - ${}^{\scriptscriptstyle \rm D}$ Neighboring lesions \to similar anopsia

COMPLICATIONS

- Anton–Babinski syndrome (visual anosognosia)
 - \circ Individual unable to perceive vision \rightarrow blindness denial
 - Image confabulation common

SIGNS & SYMPTOMS

- Inability to perceive visual input
- CN testing: II/III preserved pupillary light reflex

DIAGNOSIS

DIAGNOSTIC IMAGING

MRI

Some cases, detects cause (e.g. vascular occlusion, infarction)

OTHER INTERVENTIONS

History, physical examination

- Assess non-cortical functions: normal pupillary light reflex
 - Limited/no visual response with intact pupillary light reflex → blindness neurological not ocular

Fundoscopy

Normal

TREATMENT

MEDICATIONS

- Vascular occlusion: thrombolysis
- PRES: emergent antihypertensives

OTHER INTERVENTIONS

- Spontaneous recovery
 - Visual defects may persist (e.g. prosopagnosia—inability to recognize faces)

HEMIANOPSIA

osms.it/hemianopsia

PATHOLOGY & CAUSES

 Individual loses half of visual field, commonly due to retrochiasmatic lesion of visual tract

Pathogenesis

- Vascular
 - Middle cerebral artery (MCA): complete contralateral hemianopia
 - Unilateral posterior cerebral artery (PCA): contralateral hemianopia with macular sparing
- Mass
 - Visual pathway compression

CAUSES

- Unilateral optic tract lesion
- Large (complete) unilateral optic radiation lesion
- Quadrantanopia: sub-complete lesion, corresponds to lesioned optic radiation
 - Upper outer-quadrant deficit ("pie-inthe-sky" defect) → temporal lobe loop lesion
 - \circ Lower inferior quadrant deficit \rightarrow parietal lobe lesion
- Large, unilateral primary visual cortex lesion
 - Macular visual field spared
- Bilateral upper/lower visual cortex lesion \rightarrow altitudinal hemianopia
 - Upper/lower field visual defect

COMPLICATIONS

- Vascular/mass effect territory-dependent
- PCA distribution
 - Diplopia, dizziness, balance issues
- Anterior cerebral artery (ACA)/MCA distribution
 - Ipsilateral motor and sensory symptoms
- Parietal lobe involvement → contralateral neglect

- Lesion to non-dominant lobe

 → Gerstmann syndrome (finger agnosia, acalculia, agraphia, right-left visualization)
- Temporal lobe involvement \rightarrow seizure

SIGNS & SYMPTOMS

- Visual field loss
 - Unilateral hemianopia: contralateral optic tract lesion (homonymous hemianopia); large, contralateral optic radiation lesion
 - Superior quadrantanopia: contralateral temporal lobe lesion of optic radiation loop
 - Inferior quadrantanopia: contralateral parietal lobe lesion of optic radiation loop
- Neurologic examination
 - CN II testing: visual field
 - Motor/sensory testing for concomitant symptoms

DIAGNOSIS

History, physical examination

DIAGNOSTIC IMAGING

MRI

Mass lesions/old stroke (preferred method)

CT scan

Mass lesion and acute, hemorrhagic stroke

TREATMENT

SURGERY

• Resection: mass compressing the visual pathway

OTHER INTERVENTIONS

- Peripheral prism spectacles
 - \circ High-power prism segments in regular spectacle lens \rightarrow expands visual field up to 30°
- Saccadic eye movement training (scanning therapy)
 - Individual makes compensatory saccadic eye movements to side with lost visibility without moving head → ↑ function, injury prevention

HOMONYMOUS HEMIANOPSIA

osms.it/homonymous-hemianopsia

PATHOLOGY & CAUSES

- Lesion in optic tract → vision loss in each eye (corresponding halves of visual field)
- Pathogenesis
 - Vascular: large MCA/smaller anterior choroidal artery stroke
 - Mass effect: tumor, cyst, arteriovenous malformation (AVM)

CAUSES

Unilateral optic tract lesion

SIGNS & SYMPTOMS

- Half of visual field lost
 - Not relieved by monocular vision (vision deficit persists despite closing one eye)

DIAGNOSIS

History, physical examination

DIAGNOSTIC IMAGING

MRI

Mass lesions/old stroke (preferred method)

CT scan

Mass lesion/acute, hemorrhagic stroke

TREATMENT

SURGERY

• **Resection**: mass compressing the visual pathway

OTHER INTERVENTIONS

- Peripheral prism spectacles
- Saccadic eye movement training (scanning therapy)