NOTES

NOTES METHEMOGLOBINEMIA

METHEMOGLOBINEMIA

osms.it/methemoglobinemia

PATHOLOGY & CAUSES

- \uparrow methemoglobin levels in blood > 10%
 - Normal methemoglobin level < 1%</p>
- Methemoglobin
 - Hemoglobin form: contains ferric (Fe³⁺) iron $\rightarrow \downarrow$ oxygen affinity
 - Overwhelming oxidative stress (in red blood cells) \rightarrow iron oxidation within heme (Fe²⁺ \rightarrow Fe³⁺) \rightarrow hemoglobin converted to methemoglobin
 - Oxygen binding → ↑ affinity in remaining heme sites that may have been in ferrous (Fe²⁺) state in heme tetramer → left shift in oxygen curve → overall oxygen to tissue release ability ↓ → tissue hypoxia
- Healthy cells
 - Spontaneous methemoglobin conversion rapidly ↓ by protective enzymes
 - Nicotinamide adenine dinucleotidereduced (NADH) methemoglobin reductase (diaphorase I)
 - Nicotinamide adenine dinucleotide phosphate (NADPH) methemoglobin reductase
 - Ascorbic acid
 - Glutathione enzyme system

TYPES

Acquired methemoglobinemia

- ↑ methemoglobin formation
- Drugs
 - Antibiotics, local anesthetics, antiemetics

- Industrial chemicals
 - Aniline dyes, chlorates, bromates, nitrates

Congenital methemoglobinemia

- Recessive gene → enzyme diaphorase I deficiency → inefficient methemoglobin ↓ → accumulation
- Abnormal hemoglobin variants (HbM/HbH) → hemoglobin not enzymatic-reduction amenable
- Diaphorase I cofactor deficiency
 - Impaired upstream enzymes → insufficient diaphorase I cofactors production → impaired enzymatic reduction
 - Pyruvate kinase deficiency
 - Glucose-6-phosphate dehydrogenase deficiency

SIGNS & SYMPTOMS

- Arterial blood may develop bluish/ chocolate-brown tinge
- Healthy individuals
 - Symptoms may only manifest at methemoglobin levels > 15%
 - Cyanosis → dyspnea, mental status change, headache, fatigue, exercise intolerance, dizziness
- Severe methemoglobinemia (> 50%) \rightarrow seizure, coma, death

DIAGNOSIS

DIAGNOSTIC IMAGING

Co-oximetry

 Analyses blood-spectrum absorption → methemoglobin peak absorbance at 631nm

LAB RESULTS

- Arterial blood gas
 - Clinical cyanosis in normal arterial PO₂ presence
- Enzyme assays
 - Enzyme assays for specific enzymes involved in maintaining hemoglobin in reduced state may be utilized

TREATMENT

MEDICATIONS

- Specific
 - Methylene blue: intravenous reducing agent → reduces heme group from methemoglobin → hemoglobin

OTHER INTERVENTIONS

- Supplemental oxygen
- Vitamin C (ascorbic acid) may improve cyanosis in chronic cases