(4) ${ }^{3}$
 $3 \quad 3$

r- مى

$$
\left\{\left.\frac{a}{b} \right\rvert\, a \in Z, b \in \mathbb{N}\right\}\left\{\left.\left\{\left.\frac{a}{b} \right\rvert\, a, b \in Z, b \neq 6\right\} \right\rvert\,\right\}
$$

$$
\frac{-1 x^{r}}{1 \times r}=\frac{-r_{x}^{r}}{r_{x} r}=\frac{-7}{7}, \frac{-8}{7}, \frac{-8}{7}, \frac{-r}{7}, \frac{-1 \vec{x} r^{r} r^{r}}{r_{x} r}
$$

包
ا- يى
 صورن لزّرم كامل كند.

رون شامد : ناهد بهصورت تغريبى كسرماى
 ازا اين رون براى ناين دو كـر ديكر مناسباست؟

$$
\frac{r}{\Delta}=\frac{r 14}{\mu 4}
$$

 نونت. نسا كار ا, ,اكامل. و كــرما را منابسـ كنبد : $\frac{\Delta}{9}=.1 \Delta 0 \quad \frac{v}{\Lambda}=V \wedge V \quad \frac{\Delta}{4}=. / \wedge \bar{r} \quad \frac{r}{\Delta}=.14$.

1 : $\because=\square .333$

در نابسن اعنارى كـر

$\frac{1}{r}=/ r r r \cdots=\cdot / \bar{r}$

$$
\frac{v}{q}=1 / 1999 \cdots=1 / \overline{9}
$$

$$
\begin{aligned}
& \frac{1}{v}=f 1 \text { fra ovier } \frac{1}{a}=\% \text { (1) } \quad \frac{v}{q}=1,14 \\
& \frac{1}{0}=. / r . \\
& \frac{1}{r}=\gamma \text { нин } \quad \frac{r}{\lambda}=v r r_{0}
\end{aligned}
$$

NTB505

$$
\begin{aligned}
& \frac{\Delta}{11}=-9 \overline{F_{0}} \\
& \frac{v}{u^{r}}: \frac{v}{a}=r / \bar{v} \\
& \frac{Q}{r_{x r} r}=\frac{\theta}{4}=\because \Lambda \bar{r} \\
& \frac{v}{r_{X I}}=\frac{v}{r Y}=0, r \overline{\mid \Lambda} \\
& \frac{r}{r_{r 0}}=\frac{r}{r}=910 \\
& \frac{0}{r^{*}}=\frac{0}{19}=\% r_{1} r_{0}
\end{aligned}
$$

 مختر

$$
1+\frac{r}{r}=\frac{\omega}{r} \quad-1+\frac{r}{r}=-\frac{1}{r} \quad \frac{0}{4}-\frac{r}{1}=\frac{(V)}{r_{r}} \quad \frac{0}{q}+\frac{1}{r}=\frac{1}{r}
$$

r r

$$
\begin{aligned}
& \left(-r \frac{\theta}{4}+r \frac{1}{r}\right)+\left(-1-\frac{1}{4}\right)=\frac{1-\frac{1}{r}+\frac{r}{r}}{\frac{\partial}{4} \times-\frac{r}{10}=-\frac{r}{\theta}}+0 \frac{1}{r}=\frac{\frac{\theta}{r}}{-\frac{r}{r}} \div \frac{14}{r}=-\frac{\theta}{r} \times \frac{r}{14}=-\frac{\omega}{14} \\
& -\frac{1}{r}+\frac{-\Delta}{q}+\frac{v}{r} \times \frac{v}{\Delta}+\frac{r}{r}=-\frac{1}{r}-\frac{r}{r}+\frac{r}{r}=\frac{1}{r}-r \frac{1}{r}-r \frac{1}{r}+r \frac{v}{1 r}=\frac{-r-t \cdot+00}{r r}=-\frac{10}{1 r}=-\frac{\theta}{r} \\
& \frac{0}{4}-\frac{v}{1}+\left(r+\frac{-q}{b}\right)= \\
& \frac{0}{7}+\frac{-\frac{v}{A}}{-\frac{2}{r}}=\frac{0}{7}+\frac{r 1}{k_{0}}=\frac{14 r}{1 r_{0}} \\
& \frac{1}{-1-\frac{1}{-1-\frac{1}{r}}}=\frac{1}{-1-\frac{1}{-\frac{r}{r}}}=\frac{1}{-1+\frac{r}{k}}=\frac{1}{-\frac{1}{r}}=-r \\
& \text { ran rer rex }
\end{aligned}
$$

rr

$$
\begin{aligned}
& \text { (الت) } \frac{1}{11}, \frac{1 r}{1 r} \\
& \text { ب) } \cdot,-\frac{1}{r} \\
& \left(-\frac{1}{\varepsilon}\right)\left(-\frac{1}{a}, \frac{-\frac{1}{2}}{\frac{1}{r}-\frac{1}{\varepsilon}-\frac{1}{6}-+\cdots}\right.
\end{aligned}
$$

$$
\begin{aligned}
& ! \\
& \frac{14}{v},-\frac{r}{4}, r, v a,-\frac{2}{7}, r \frac{r}{\omega}, \frac{\Delta 7}{1 r} \\
& \text { restremer }
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{\omega}{2}<-\frac{r}{r}<\frac{14}{v}<r_{1} v_{0}<\frac{07}{1 r}<+\frac{r}{0}\right) \\
& \underline{6} \\
& \text { (1) 0, - } \frac{1}{r} \\
& -\frac{1 x t^{t}}{r \times t}=-\frac{r}{r r},\left(\frac{r}{1 r},-\frac{r}{1 r},-\frac{1}{1 r}, 0\right.
\end{aligned}
$$

درس دوم: عددهاى حقيقى
$\frac{1 x^{4}}{1 \times 4}, \frac{2}{2},\left(\frac{1}{4}\right), \frac{9}{4}, \frac{16}{4},\left(\frac{11}{4}, \frac{4 \times 4}{1 \times 4}\right.$

$$
\begin{aligned}
& \stackrel{v}{1}, \frac{1}{7}, \frac{9}{7}, \frac{10}{9}, \frac{11}{9} \text {. }
\end{aligned}
$$

- سزال هاى زير بالمخ دمبد:
$1.4142136 \quad 1.414213562$
1.41420356237

4414213562373095
أبا در 10 رنم تنانداده ند. رِاى
عددمايى ماند

 re $\sqrt{r} \sqrt{\text { كد }}$
 $\pi=r /$ /ifidTr

$$
-\frac{r}{r} \in Q^{\prime} \quad \sqrt{r} \in Q^{\prime} \quad \sqrt{\Lambda} \in Q^{\prime} \quad \cdot \in Q
$$

./r..r...r.........eQ' : J. Jon
NTS5053
كدام عبارت، درلخت , كامطبارن، نادرستامت؟؛

$$
Q \cap Q^{\prime}=\varnothing \checkmark \quad N \subseteq Q^{\prime} X \quad \mathbf{z} \subseteq Q^{\prime} \quad \mathbf{z} \subseteq Q^{\prime} X
$$

 منوان يدا كرد؟
 را يدا كيد.
ا 1/2

 مثال : نتطه نمابن عدد كتى .

 روى محور عدد •

$$
O A^{\prime}=r^{\prime}+1^{\prime}=1 \cdot \Rightarrow O A=\sqrt{1} .
$$

$$
\begin{gathered}
\sqrt{9}<\sqrt{1 .}<\sqrt{14} \\
r<\sqrt{1} \cdot<r
\end{gathered}
$$

人

مشال :
 $T<V<T \Rightarrow \sqrt{t}<\sqrt{V}<\sqrt{9} \Rightarrow r<\sqrt{v}<r$

WIS D, 5

$\sqrt{4}, \sqrt{6}, \sqrt{4}, \sqrt{v}, \sqrt{1}), \sqrt{9}$

$$
\sqrt{4}<\sqrt{0}<\sqrt{9}
$$

$$
r<\sqrt{\omega}<r
$$

on

منال :

$$
-\frac{0}{4} \in \mathrm{Q}
$$

$$
N \Delta \in \mathbb{R}
$$

$\pi \in \mathbb{R}$

$$
\frac{\Delta}{\sqrt{T}} \in \mathbf{R}
$$

M1550
اــد داخل

'تُ با بك مجهوعه در سطر دور مسارى استـ.

E.Jld

ماتُد نون روى محور تنان رمب :

$$
\begin{aligned}
& A=\{x \in \mathbb{R} \mid r \leq x<r\} \\
& B=\{x \in R \mid x<-r\} \\
& C=\{x \in R \mid-1 \leq x \leq 0\} \\
& D=\{x \in R \mid x \geq 9\}
\end{aligned}
$$

, A ع

$$
\begin{aligned}
& A=\{x \in R \mid x>-1\} \\
& B=\{x \in R \mid \leqslant\langle u\rangle \psi\} \\
& C=\{x \in R \mid x \leq r\}
\end{aligned}
$$

$$
\begin{array}{lll}
\text { vN } \in A \checkmark & \cdot / r \Delta r \Delta D r \Delta \Delta D \ldots \in B \checkmark & \sqrt{1 r} \in A \zeta \\
\sqrt{v} \in C X & \sqrt{1} \in A \checkmark & -\cdots \in C
\end{array}
$$

$$
\begin{gathered}
\{-1, r, 1, r, r\}(\ln \\
\{x \in \mathbf{R} \mid x>-r\}(ب \\
\{x \in \mathbf{R} \mid-r<x<r\})
\end{gathered}
$$

Ү४

 (الفن) $A=\{x \in R \mid 1 / D<x<0\}$, $B=\{x \in Q \mid / D<x<0\}$

1) $\mathbf{N} \cup \mathbf{Z}=\mathbf{Z} \quad$ r) $\mathbf{R}-Q^{\prime} Q \quad, \quad \mathbf{Z} \cap \mathbf{N}=\boldsymbol{N} \quad \mathbf{R} \cap Q^{\prime}=Q^{\prime}$

د) $\sqrt{r}, \sqrt{\pi / 1}$
\&ـ عبارات درست وا با

(r \square X X

$\frac{r}{11}=\overline{\gamma V} \quad \sqrt{10} \sim Y_{1} 14$ Yrvv 77 V عد ها
-1) $\sqrt{x_{r}}, \sqrt{r_{1}}, \sqrt{r_{1} v}, \sqrt{Y}, \sqrt{r_{1}}, \sqrt{H_{1}}$
$\Leftrightarrow \sqrt{r}, \sqrt{0}, \sqrt{4}, \sqrt{V}, \sqrt{\wedge}, \sqrt{\psi 4}=4$
سُوْ

$$
\begin{aligned}
& \text { 8. } 4=\sqrt{r 4}, \sqrt{r v}, \sqrt{r \Lambda}, \sqrt{r 9}, \sqrt{H_{0}}, v=\sqrt{F 9} \\
& \angle-r=-\sqrt{F},-\sqrt{r},-\sqrt{r}, \sqrt{10}, \sqrt{r .}, \Delta=\sqrt{r_{0}}
\end{aligned}
$$

درس سوم: قدر مطلق و محاسبهُ تقريبى
అ్రld

 هاملة

「 بانت

مثال : ذاصله نغاط نظر دو عدلY

$$
\left.\left|\frac{r}{r}\right|=1-\frac{r^{\prime}}{r} \right\rvert\,=\frac{r}{r}: \text { برابر }\left(-\frac{r}{r}\right), \frac{r}{r}
$$

مثال : هدر مطلز

تدر مطلق صنر. مساوى صفر و ملر مطلق عددماي مبْث باير خود آن عدد

$$
\begin{aligned}
& a=\cdot \Rightarrow|a|=0 \\
& a>\Rightarrow|a|=a \\
& a<\Rightarrow|a|=-a
\end{aligned}
$$

منال : به دهاسبات زير نوجه كند :

$$
\begin{aligned}
& \left|1 \cdot-r_{0}+\Delta\right|=|-0|=0 \\
& |(-9) \times(+1 \cdot)|=|-4 \cdot|=9 .
\end{aligned}
$$

اـج جلات ستخ راست را بـ عبارات مناسب در ست جب وصل كتد :

 را باهم وصل كنبد :
(l) $a>\cdot, b>\cdot$ 1) $a b<$.

ب) $a<\cdot, b<0$
c) $a<\cdot, b>$.

$$
\begin{aligned}
& \Rightarrow r) a b>c, a+b>0 \\
& -r) a b>\cdot, a+b<0
\end{aligned}
$$

 را ببهم وصل كبد :
الن a > .
ب) $a>c, b>$

c) $a<\cdot$

د) $a<\cdot, b$

$$
|a \times b|=|a| \times|b|
$$

$|-\alpha \times r|=|-\alpha| \times|r| \quad a=-\infty \quad \cdot \sin$
\mid | ا) ندر بطلِ حاصلضربٍ

$$
\begin{aligned}
& 10=10 \\
& |a+b| \leqslant|a|+|b| \\
& |-d+r| \leqslant|-o|+|r|
\end{aligned}
$$

$$
a=-\infty ; j \dot{b}
$$

$$
b=r
$$

ఆ

$$
|-r| \leqslant \omega+\mu
$$

$$
r \leqslant a+r
$$ $\sqrt{r}=1 / \% \quad \sqrt{r} \simeq 1, \gamma \quad \sqrt{\Delta}=r / r \quad \sqrt{4} \approx r / \psi \quad \sqrt{\mathrm{r}}=\mathrm{r} / \mathrm{Y}$

$$
|1-\sqrt{r}|=-(1-\sqrt{r})=-1+\sqrt{r}=\sqrt{r}-1
$$

دلبل :

1) $|r-\sqrt{r}|=r_{-} \sqrt{r}$
r) $|\sqrt{v}-\sqrt{\lambda}|=-(\sqrt{v}-\sqrt{\lambda})=\sqrt{\lambda}-\sqrt{v}$
r) $|r \sqrt{\Delta}-\sqrt{\Delta}|=|\sqrt{0}|=\sqrt{0}$
f) $|-F-\sqrt{r}|=-(-F-\sqrt{r})=r+\sqrt{r}$
: 2

: $\sqrt{5}\left(x-\sqrt{r^{r}}\right.$ cou $\sqrt{r^{2}} \simeq 1, v$

مـمال:

$$
|a+b+c|=\left|\frac{1}{r}+\sqrt{r}+(-r)\right|=|-r / 0+\sqrt{r}|
$$

جـون

جدول زر را كامل كيد :

$$
\begin{array}{c|ccccccc}
\sqrt{a^{r}} & \sqrt{(-r)^{\top}} & \sqrt{r^{\prime}} & \sqrt{4^{\pi}} & \sqrt{(-4)^{\top}} & \sqrt{(-v)^{\top}} & \sqrt{(-1 r v)^{\top}} & \sqrt{r+0^{\top}} \\
\hline \text { عامر } & r & r & Y & 4 & V & 1 r v & r \times 0
\end{array}
$$

مثنال : رأى محاسب
$\sqrt{(1-\sqrt{r})^{r}}=|\underbrace{\mid 1-\sqrt{r}}_{\hat{\omega}}|=-(1-\sqrt{r})=-1+\sqrt{r}$

اــ عازتهان نزر رابا هـ منابس كبـ :
$1-\mathbf{V}^{+}$
4) $|-\lambda+0|$$|-\mathrm{N}|+|0|$
(2) $r-1$$T|-|| |$

$|\cdot|=0 \quad\left|-\frac{t}{r}\right|=\frac{f}{r}$
(il) $\sqrt{(-r 890)^{\prime}}=\left|-r_{090}\right|=r 090$
4) $\sqrt{\left(r(t)^{\prime}\right.}=|r| r q t \mid=1 r q t$
t) $\sqrt{(-r+\sqrt{1 \cdot})^{\prime}}=|-r+\sqrt{1 \cdot}|=\sqrt{1-.} \cdot r$

د) $\sqrt{(r-\sqrt{2})^{1}}=|\gamma-\sqrt{0}|=-(r-\sqrt{0})=\sqrt{0}-r$

世20
$:$:
$\left.|a+b|+r|a-b-c|=\left|r r o+\left(-\frac{1}{x}\right)\right|+r\left|r r o-\left(-\frac{1}{r}\right)-\left(r \frac{1}{r}\right)\right|=|-1+r|-r \right\rvert\,=0+t=t$
$r \sqrt{0}$
竍 $1-r \sqrt{0} \mid$

T- بارات نرا
4) $0-0 \sqrt{4}$ clal $+\sqrt{2}=\sqrt{a}$

.

$$
\begin{aligned}
& |a|+a \\
& a=-r
\end{aligned} \Rightarrow|-r|+(-r \mid=r-r=\cdot
$$

$$
\begin{aligned}
& |a|+a \\
& a=0
\end{aligned} \Rightarrow 1 \cdot 1+=
$$

$$
\begin{aligned}
& \sqrt{(1-\sqrt{1 .})^{2}}=|1-\sqrt{1 .}|=-(\sqrt{1 .}-1)=-\sqrt{1} \cdot+1=1-\sqrt{1} \text {. }
\end{aligned}
$$

